Covering Techniques and Rational Points on Some Genus 5 Curves
نویسنده
چکیده
We describe a method that allows, under some hypotheses, to compute all the rational points of some genus 5 curve defined over a number field. This method is used to solve some arithmetic problems that remained open.
منابع مشابه
The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملCoverings of Curves of Genus 2
We shall discuss the idea of finding all rational points on a curve C by first finding an associated collection of curves whose rational points cover those of C. This classical technique has recently been given a new lease of life by being combined with descent techniques on Jacobians of curves, Chabauty techniques, and the increased power of software to perform algebraic number theory. We shal...
متن کاملApplication of Covering Techniques to Families of Curves
Much success in finding rational points on curves has been obtained by using Chabauty’s Theorem, which applies when the genus of a curve is greater than the rank of the Mordell-Weil group of the Jacobian. When Chabauty’s Theorem does not directly apply to a curve C, a recent modification has been to cover the rational points on C by those on a covering collection of curves Di, obtained by pullb...
متن کاملHurwitz spaces
1.1 The classical Hurwitz space and the moduli of curves The classical Hurwitz space first appeared in the work of Clebsch [5] and Hurwitz [17] as an auxiliary object to study the moduli space of curves. Let X be a smooth projective curve of genus g over C. A rational function f : X → P of degree n is called simple if there are at least n − 1 points on X over every point of P. Such a cover has ...
متن کاملOn the maximum number of rational points on singular curves over finite fields
We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.
متن کامل